Baselines and Strategies Code Examples

model = SimpleMLP(hidden_size=args.hs)
optimizer = torch.optim.SGD(model.parameters(),
criterion = torch.nn.CrossEntropyLoss()

# check if selected GPU is available or use CPU
assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
if args.cuda >= 0:
    assert torch.cuda.device_count() > args.cuda,
    f"{args.cuda + 1} GPU needed. Found {torch.cuda.device_count()}."
device = 'cpu' if args.cuda == -1 else f'cuda:{args.cuda}'
print(f'Using device: {device}')

# create split scenario
scenario = SplitMNIST(n_experiences=5, return_task_id=False)

interactive_logger = InteractiveLogger()
eval_plugin = EvaluationPlugin(
    accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),

# create strategy
assert len(args.lwf_alpha) == 1 or len(args.lwf_alpha) == 5,
'Alpha must be a non-empty list.'
lwf_alpha = args.lwf_alpha[0] if len(args.lwf_alpha) == 1 else args.lwf_alpha

strategy = LwF(model, optimizer, criterion, alpha=lwf_alpha,
               train_epochs=args.epochs, device=device,
               train_mb_size=args.minibatch_size, evaluator=eval_plugin)

# train on the selected scenario with the chosen strategy
print('Starting experiment...')
results = []
for train_batch_info in scenario.train_stream:
    print("Start training on experience ", train_batch_info.current_experience)

    strategy.train(train_batch_info, num_workers=4)
    print("End training on experience ", train_batch_info.current_experience)
    print('Computing accuracy on the test set')

🤝 Run it on Google Colab

You can run this chapter and play with it on Google Colaboratory:

Notebook currently unavailable.

Last updated